Strictly speaking, this page should be titled “Adam’s publications”.

See the team pages for everybody else!

 
  1. Acetobacter pomorum in the Drosophila gut microbiota buffers against host metabolic impacts of dietary preservative formula and batch variation in dietary yeast. Sannino DR, Dobson AJ. [2023]. Applied and Environmental Microbiology, e00165-23

  2. Mitonuclear interactions shape both direct and parental effects of diet on fitness and involve a SNP in mitoribosomal 16s rRNA. Dobson AJ, Voigt S, Kumpitsch L, Langer L, Voigt E,  Ibrahim R, Dowling DK, Reinhardt K [2023]. PLOS Biology 21 (8), e3002218

  3. The importance of reaction norms in dietary restriction and ageing research MJP Simons, AJ Dobson [2023] Ageing Research Reviews, 101926

  4. Transcriptional memory of dFOXO activation in youth curtails later-life mortality through chromatin remodeling and Xbp1 G Martínez Corrales, M Li, T Svermova, A Goncalves, D Voicu, AJ Dobson, TD Southall, N Alic [2022] Nature Aging, 1-15

  5. Multiscale analysis reveals that diet-dependent midgut plasticity emerges from alterations in both stem cell niche coupling and enterocyte size A Bonfini, AJ Dobson, D Duneau, J Revah, X Liu, P Houtz, N Buchon [2021] Elife 10, e64125

  6. The neuronal receptor tyrosine kinase Alk is a target for longevity. Woodling NS, Aleyakpo B, Dyson MC, Minkley LJ, Rajasingam A, Dobson AJ, Leung KHC, Pomposova S, Fuentealba M, Alic N, Partridge L. [2020] Ageing Cell 2020;00:e13137.

  7. Longevity is determined by ETS transcription factors in multiple tissues and diverse species. Dobson AJ, Boulton-McDonald R, Houchou L, Ren Z, Hoti M, Rodriguez-Lopez M, Gkantiragas A, Gregoriou A, Baehler J, Ezcurra M, Alic N. [2019] PLoS Genetics 15 (7): e1008212

  8. Tissue-specific transcriptome profiling of Drosophila reveals roles for GATA transcription factors in longevity by dietary restriction. Dobson AJ†, He X, Blanc E, Bolukbasi E, Feseha Y, Yang M†, Piper MDW†. [2018] Nature Partner Journals: Aging & Mechanisms of Disease 4: 5.  doi:10.1038/s41514-018-0024-4 †Corresponding author

  9. The Drosophila melanogaster gut microbiota provisions thiamine to its host. Sannino D, Dobson AJ, Edwards K, Angerts E, Buchon N. [2018] mBio 9 (2): e00155-18

  10. RNA polymerase III limits longevity downstream of TORC1. Filer D, Thompson MA, Takhaveev V, Dobson AJ, Green JWM, Heinemann M, Tullet JMA, Alic N. [2017] Nature 552 (7684): 263-267

  11. Nutritional programming of lifespan by FOXO inhibition on sugar-rich diets. Dobson AJ, Ezcurra M, Flanagan CE, Summerfield AC, Piper MDW, Gems D, Alic N. [2017]. Cell Reports 18 (2): 299-306.

  12. The Drosophila transcriptional network is structured by microbiota. Dobson AJ, Chaston JM, Douglas AE. [2016]. BMC Genomics 17:975 DOI: 10.1186/212864-016-3307-9

  13. Antimicrobial defense and persistent infection in insects revisited. Makarova O, Rodriguez-Rojas A, Eravci M, Weise C, Dobson AJ, Johnston PR, Rolff J. [2016]. Philosophical transactions of the Royal Society 371 (1695): DOI: 10.1098/rstb.2015.0296

  14. Genomic signatures of adaptation to antimicrobial peptides in Staphylococcus aureus. Johnston PR*, Dobson AJ*, Rolff J. [2016]. G3|Genes:Genetics:Genomes 6 (6):1535-1539. *Co-first authors.

  15. Sex difference in pathology of the ageing gut mediates the greater response of female lifespan to dietary restriction. Regan J, Khericha M, Dobson AJ, Bolukbasi E, Rattanavirotkul N, Partridge L. [2016]. eLife 5: e10956.

  16. Host genetic control of the microbiota mediates the Drosophila nutritional phenotype. Chaston JM, Dobson AJ, Newell PD, Douglas AE. [2016] Applied and Environmental microbiology 82 (2): 671-679.  

  17. Regional cell-specific transcriptome mapping reveals regulatory complexity in the adult Drosophila midgut. Dutta D, Dobson AJ, Korzelius J, Gläßer D, Houtz PL, Revah J, Edgar B, Buchon N. [2015]. Cell Reports 12 (2): 346-358.

  18. Host genetic determinants of microbiota-dependent nutrition revealed by genome-wide analysis of Drosophila melanogaster. Dobson AJ*, Chaston JM*, Newell PD, Donahue L, Hermann S, Sannino DR, Westmiller SL, Wong CNA, Clark AG, Lazzaro BP, Douglas AE. [2015]. Nature Communications 6: 6312. *Co-first authors.

  19. Elevated survival of experimentally evolved antimicrobial peptide-resistant S. aureus in an animal host. Dobson AJ, Purves J, Rolff J. [2014]. Evolutionary Applications 7 (8): 905-912. †Corresponding author.

  20. In vivo function and comparative genomic analyses of the Drosophila gut microbiota identify candidate symbiosis factors. Newell PD, Chaston JM, Wang Y, Winans NJ, Sannino DR, Wong ACN, Dobson AJ, Kagle J, Douglas AE. [2014]. Frontiers in Microbiology 5: 576.

  21. Gut microbiota dictates the metabolic response of Drosophila to diet. Wong ACN*, Dobson AJ*, Douglas AE. [2014]. The Journal of Experimental Biology 217 (11): 1894-1901. *Co- first authors.

  22. Comparing selection on S. aureus between antimicrobial peptides and common antibiotics. Dobson AJ, Purves J, Kamysz W, Rolff J. [2013]. PLoS ONE 8 (10): e76521.

  23. New synthesis: Animal communication mediated by microbes: fact or fantasy? Douglas AE, Dobson AJ. [2013]. Journal of Chemical Ecology 39 (9): 1149.

  24. Identification of immunomological expressed sequence tags in the mealworm beetle Tenebrio molitor. Dobson AJ, Johnston PR, Vilcinskas A, Rolff J. [2012] Journal of Insect Physiology 58 (12), 1556 - 1561.